DNV-GL

FIELD EVALUATION

Engineering Report Tigo

March 15, 2016 - April 14, 2016

Report No.: R86530135A-1

Date: 21 April 2016

IMPORTANT NOTICE AND DISCLAIMER

- 1. This document is intended for the sole use of the Customer as detailed on the front page of this document to whom the document is addressed and who has entered into a written agreement with the DNV GL entity issuing this document ("DNV GL"). To the extent permitted by law, neither DNV GL nor any group company (the "Group") assumes any responsibility whether in contract, tort including without limitation negligence, or otherwise howsoever, to third parties (being persons other than the Customer), and no company in the Group other than DNV GL shall be liable for any loss or damage whatsoever suffered by virtue of any act, omission or default (whether arising by negligence or otherwise) by DNV GL, the Group or any of its or their servants, subcontractors or agents. This document must be read in its entirety and is subject to any assumptions and qualifications expressed therein as well as in any other relevant communications in connection with it. This document may contain detailed technical data which is intended for use only by persons possessing requisite expertise in its subject matter.
- 2. This document is protected by copyright and may only be reproduced and circulated in accordance with the Document Classification and associated conditions stipulated or referred to in this document and/or in DNV GL's written agreement with the Customer. No part of this document may be disclosed in any public offering memorandum, prospectus or stock exchange listing, circular or announcement without the express and prior written consent of DNV GL. A Document Classification permitting the Customer to redistribute this document shall not thereby imply that DNV GL has any liability to any recipient other than the Customer.
- 3. This document has been produced from information relating to dates and periods referred to in this document. This document does not imply that any information is not subject to change. Except and to the extent that checking or verification of information or data is expressly agreed within the written scope of its services, DNV GL shall not be responsible in any way in connection with erroneous information or data provided to it by the Customer or any third party, or for the effects of any such erroneous information or data whether or not contained or referred to in this document.
- 4. Any energy forecasts estimates or predictions are subject to factors not all of which are within the scope of the probability and uncertainties contained or referred to in this document and nothing in this document guarantees any particular wind speed or energy output.

KEY TO DOCUMENT CLASSIFICATION

For disclosure only to named individuals within the Customer's Strictly Confidential

organization.

For disclosure only to individuals directly concerned with the

subject matter of the document within the Customer's

organization.

Not to be disclosed outside the Customer's organization. Commercial in Confidence

Not to be disclosed to non-DNV GL staff DNV GL only

Private and Confidential

Distribution for information only at the discretion of the Customer (subject to the above Important Notice and Disclaimer and the

Customer's Discretion terms of DNV GL's written agreement with the Customer).

Available for information only to the general public (subject to the

Published above Important Notice and Disclaimer).

DNV GL PVEL, LLC Page ii

Project name: Engineering Report		DNV GL - Energy		
Report title: Performance Testing Customer: Tigo		Advisory Americas		
		1360 Fifth Street		
Contact person:	Vered Sharon	Berkeley, CA 94710		
Date of issue:	21 April 2016	Tel: +1 415 320 7835		
Project No.:	Q86530135	Enterprise No.: 27-0489579		
Report No.:	R86530135A-1			
Task and objective Perform Performa	e: nce Testing for Trina/Tigo.			
		Michael Mills-Price		
Prepared by:		Approved by:		
Michael Varney PV Field Test Engineer				
☐ Strictly Confide	ntial			
☐ Private and Cor				
☐ Commercial in (Confidence			
\square DNV GL only				
⊠ Customer's Disc	cretion			
\square Published				
© DNV GL PVEL, LLC. A	ll rights reserved.			

Reference to part of this report which may lead to misinterpretation is not permissible.

DNV GL PVEL, LLC Page iii

Table of contents

1 INTRODUCTION	1
1.1 System Configuration	2
1.2 System Maintenance	2
	_
2 PROJECT RESULTS	
2.1 Test Region	
2.2 Test Period	
2.3 Weather Information	4
2.4 Summary of Raw Data Results	5
2.5 Normalized System Data	5
2.6 System Ranking for Period of Study	6
3 SUMMARY	7
List of tables	
Table 1-1 System Summary	2
Table 2-1 Weather Data	4
Table 2-2 Summary of Raw Data Results	5
Table 2-3 Normalized System Data	J
List of figures	
Figure 1-1 Energy Harvest System Installation	2

List of abbreviations

Abbreviation	Meaning
DNV GL	DNV GL PVEL, LLC
POA	Plane of Array
PV	Photovoltaic

DNV GL PVEL, LLC Page v

1 INTRODUCTION

Tigo has retained DNV GL to perform energy harvest assessments on two (2) side-by-side systems. Each system leverages quantity fifteen (15) PV modules for an approximate 4 kW system comparison. The systems are left to accumulate energy and the results of the systems performance are highlighted in this report.

1.1 System Configuration

There exist 2 systems as a part of this energy harvest assessment. A table highlighting the systems is shown below detailing system configuration, approximate rated output, and PV module type.

Table 1-1 System Summary

System	m PV Module Inverter		System Size	
Tigo DC Optimizers	Trina TSM-260PD05.18	5kW SMA Inverter	3921 Watts	
SolarEdge	Trina TSM-260PD05.18	3.8kW SolarEdge Inverter	3919 Watts	

An image of the final installation is shown as Figure 1 below. Each of the systems are mounted to simulated rooftop structures and oriented South facing for the energy harvest analysis.

Figure 1-1 Energy Harvest System Installation

1.2 System Maintenance

DNV GL performs routine system cleaning and maintenance at PV USA on a system need basis. With local construction activities resulting in higher soiling content than normal, DNV GL performs monthly module washing on these systems through the summer months, and quarterly cleaning from October through March.

2 PROJECT RESULTS

This report covers the testing and evaluation period starting March 15, 2016 and ending April 14, 2016 the below are the raw and normalized data results from this four system energy yield analysis.

2.1 Test Region

PVUSA is located at 24662 Country Road 102 in Davis, California. The Davis facility includes a number of desirable measurement and environmental conditions for this type of analysis, including custom built rooftops for this set of experiments to better reflect real world installation conditions.

2.2 Test Period

This testing period covers a one-month span of time over the spring months at Davis, California. The monitoring period started on March 15, 2016 and ended on April 14, 2016. The data for this period is shown below.

DNV GL Report No.:R86530135A-1 www.dnvgl.com

2.3 Weather Information

Table 2-1 Weather Data

Date	POA Insolation	Wind Direction	Wind Speed	Air Temperature	Humidity	Barometric Pressure	
Date	Total [kWh/m²]	Avg. [°]	Avg. [m/s]	Avg. [°C]	Avg. [%]	Avg. [mBar]	
March 15, 2016	6.892	267.0	1.8	15.1	52.0	1022.6	
March 16, 2016	6.805	162.6	1.9	16.9	56.3	1017.4	
March 17, 2016	6.993	145.7	1.4	18.7	57.5	1012.9	
March 18, 2016	6.768	165.6	1.2	18.2	63.5	1013.4	
March 19, 2016	6.440	190.3	1.4	18.0	65.8	1014.9	
March 20, 2016	2.836	199.9	2.4	16.4	73.4	1016.0	
March 21, 2016	2.159	203.1	3.1	14.2	71.1	1015.9	
March 22, 2016	7.236	144.0	1.4	14.3	51.2	1022.2	
March 23, 2016	6.983	236.3	2.1	16.4	49.6	1024.6	
March 24, 2016	6.696	145.0	1.0	17.5	56.3	1021.6	
March 25, 2016	7.191	293.5	1.8	19.2	47.0	1015.3	
March 26, 2016	6.941	276.2	2.6	20.4	34.9	1013.1	
March 27, 2016	5.768	223.0	1.5	17.4	64.5	1015.3	
March 28, 2016	5.811	262.8	3.2	13.5	42.0	1010.8	
March 29, 2016	7.409	258.9	2.2	15.9	34.7	1010.0	
March 30, 2016	7.344	208.0	1.3	16.4	47.6	1013.9	
March 31, 2016	5.410	211.8	1.1	17.2	59.7	1017.0	
April 1, 2016	6.799	180.3	1.5	18.6	54.6	1019.3	
April 2, 2016	7.198	173.9	1.1	18.8	58.6	1019.6	
April 3, 2016	6.989	211.1	1.3	20.3	53.6	1016.8	
April 4, 2016	7.405	195.7	1.4	20.1	52.2	1020.9	
April 5, 2016	7.619	322.2	3.4	22.7	28.4	1020.6	
April 6, 2016	7.521	225.6	1.6	24.7	36.8	1017.7	
April 7, 2016	5.500	239.9	1.8	22.1	47.4	1010.4	
April 8, 2016	5.224	261.0	1.7	20.0	58.1	1009.4	
April 9, 2016	1.054	215.0	1.7	15.0	84.1	1010.9	
April 10, 2016	2.588	150.4	2.0	15.6	78.0	1010.9	
April 11, 2016	5.962	205.4	1.4	18.4	63.0	1017.6	
April 12, 2016	4.537	206.6	1.8	18.2	63.5	1019.8	
April 13, 2016	6.977	174.1	1.6	18.1	50.7	1018.7	
April 14, 2016	7.381	285.5	2.6	16.7	45.8	1018.0	
Total	188.437	214.2	1.8	17.9	54.9	1016.4	

2.4 Summary of Raw Data Results

Table 2-2 Summary of Raw Data Results

Model	Number of Modules	Rated Wattage [W]	System Capacity [kW]	Inverter Model	Results	
Tigo Optimizers	15	260	3.921	5kW SMA	Production Power [kWh]	667.328
					Yield [kWh/kWp]	170.19
					Performance Ratio [%]	90.3
SolarEdge Optimizers	15	260	3.919	3.8kW SolarEdge	Production Power [kWh]	656.394
					Yield [kWh/kWp]	167.49
					Performance Ratio [%]	88.9

2.5 Normalized System Data

Table 2-3 Normalized System Data

System	Raw Data (kWh)	Scaling Factor	Normalized Data (kWh)
Tigo Optimizers	667.328	0.9995	666.988
SolarEdge Optimizers	656.394	1	656.394

2.6 System Ranking for Period of Study

The systems are evaluated based on the Energy Yield, Performance ratio (%), and normalized production data (performance ratio) will be the basis for determining ranking. The performance ratio is a measure of PV energy converted by PV system that is normalized to system nameplate on the PV side by results from the flash testing of the PV modules.

$$AC\ Performance\ Ratio = \frac{AC\ Energy\ Converted\ (kWh)}{Solar\ Insolation\ (\frac{kWh}{m^2})} \times \frac{1000\ (\frac{W}{m^2})}{Nameplate\ Power\ Rating\ (W)}$$

- 1. Tigo Optimizers
- 2. SolarEdge Optimizers

DNV GL Report No.:R86530135A-1 www.dnvgl.com

3 SUMMARY

For this period of study (March 15, 2016 to April 14, 2016) the Tigo system outperformed all other systems in the study. The normalized results show the Tigo Optimizers as the highest performer, followed by the SolarEdge system.

ABOUT DNV GL Driven by our purpose of safeguarding life, property and the environment, DNV GL enables organizations to advance the safety and sustainability of their business. We provide classification and technical assurance along with software and independent expert advisory services to the maritime, oil and gas, and energy industries. We also provide certification services to customers across a wide range of industries. Operating in more than 100 countries, our 16,000 professionals are dedicated to helping our customers make the world

safer, smarter, and greener.